Consider the given integral. I=∫sinx√cos2x−2cosx−3dx I=∫sinx√cos2x−2cosx+1−4dx I=∫sinx√(cosx−1)2−4dx Let t=cosx−1 −dt=sinxdx Therefore, I=−∫dt√t2−22 I=−log(t+√t2−4)+C On putting the value of t, we get I=−log(cosx−1+√(cosx−1)2−4)+C Hence, this is the answer.