The correct option is A 2tan−1√(x+1+1x)
Let I=∫(x−1)dx(x+1)√(x3+x2+x)=∫(x2−1)dx(x+1)2√x3+x2+x
=∫x2(1−1x2)dx(x2+2x+1)√x3+x2+x=∫x2(1−1x2)dxx(x+2+1x)x√x+1+1x
Put x+1x=t⇒(1−1x2)dx=dt
Therefore
I=∫dt(t+2)√t+1
Now put 1+t=u2⇒dt=2udu
Therefore
I=∫2udu(u2+1)√u2=2∫duu2+1
I=2tan−1u=2tan−1(√1+t)=2tan−1√x2+x+1x
Hence, option 'A' is correct.