Let t=x+2⇒dt=dx
=∫(t−2)2et−2t2dt
=∫(t2−4t+4)et−2t2dt
=∫t2et−2t2dt−4∫tet−2t2dt+4∫et−2t2dt
=∫et−2dt−4∫et−2tdt+4∫et−2t2dt
=et−2−4∫et−2tdt+4∫et−2t2dt
Let u=et−2⇒du=et−2dt
dv=dtt2⇒v=−1t
=et−2−4∫et−2tdt+4[−1tet−2+∫et−2dttdt]+c
=et−2−4∫et−2tdt−41tet−2+4∫et−2dttdt+c
=et−2−41tet−2+c
=(1−4t)et−2+c
=(1−4x+2)ex+2−2+c
=x+2−4x+2ex+c
=x−2x+2ex+c