1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Substitution Method to Remove Indeterminate Form
Evaluate ∫x...
Question
Evaluate
∫
x
+
9
(
x
+
10
)
2
e
x
d
x
=
A
e
x
1
x
+
9
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
e
x
1
x
+
10
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
e
x
1
(
x
+
9
)
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e
x
+
c
1
(
x
+
10
)
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
e
x
1
x
+
10
+
c
∫
e
x
x
+
9
(
x
+
10
)
2
d
x
=
∫
e
x
[
(
x
+
10
)
−
1
]
(
x
+
10
)
2
d
x
=
∫
e
x
[
1
(
x
+
10
)
−
1
(
x
+
10
)
2
]
d
x
It is in the form of
∫
e
x
(
f
(
x
)
+
f
′
(
x
)
)
d
x
=
e
x
f
(
x
)
+
c
⇒
∫
e
x
[
1
(
x
+
10
)
−
1
(
x
+
10
)
2
]
d
x
=
e
x
(
x
+
10
)
+
c
∴
∫
x
+
9
(
x
+
10
)
2
e
x
d
x
=
e
x
(
x
+
10
)
+
c
Suggest Corrections
0
Similar questions
Q.
∫
e
x
1
-
x
1
+
x
2
2
d
x
is
equal
to
(
a
)
e
x
1
+
x
+
C
(
b
)
-
e
x
1
+
x
2
+
C
(
c
)
e
x
(
1
+
x
2
)
2
+
C
(
d
)
-
e
x
(
1
+
x
2
)
2
+
C
Q.
I
:
∫
e
x
(
1
−
cot
x
+
cot
2
x
)
d
x
=
−
e
x
cot
x
+
c
I
I
:
∫
e
x
(
1
+
x
log
x
x
)
d
x
=
e
x
log
x
+
c
Q.
Evaluate
∫
e
x
(
1
+
x
)
sin
2
(
x
e
x
)
d
x
Q.
equals
A. − cot (
ex
x
) + C
B. tan (
xe
x
) + C
C. tan (
e
x
) + C
D. cot (
e
x
) + C