The correct option is
B π/2Given : ∫∞−∞dxex+e−x∫∞−∞dxex+e−x=limc→−∞∫0cdxex+e−x+limb→∞∫b0dxex+e−x=limc→−∞∫0cexdxe2x+1+limb→∞∫b0exdxe2x+1
Let z=exx→cz→ex
dz=exdxx→0z→1
∫∞−∞dxex+e−x=limc→−∞∫0ecdzz2+1+limb→∞∫eb0dzz2+1=limc→−∞[tan−1z]0ec+limb→∞[tan−1z]eb0=limc→−∞(0−tan−1ec)+limb→∞(tan−1eb−0)=π2
Hence the correct answer is π2