The correct option is
D 0Given :
∫∞−∞xe−x2dx∫∞−∞xe−x2dx=limc→−∞∫0cxe−x2dx+limb→∞∫b0xe−x2=limc→−∞∫0cxe−x2dx+limb→∞∫b0(−12)(−2x)e−x2dx
Let z=−x2
x→0dz=−2xdx
∫∞−∞xe−x2dx=limc→−∞∫0c(−12)ezdz+limb→∞∫b0(−12)ezdz=limc→−∞[−ez2]0c+limb→∞[−ez2]b0=limc→−∞[+e−c22−e02]+limb→∞[−e−b22+e02]=−12+12=0
Hence the correct answer is 0.