The correct option is C (x2+3x+2)3/2−5(2x+3)8√x2+3x+2−516ln∣∣∣(x+32)+√x2+3x+2∣∣∣+C
Let I=∫((3x+2)√x2+3x+2)dx
⇒I=32∫(2x+3)√x2+3x+2dx+∫(2−92)√x2+3x+2dx
Put, x2+3x+2=t in first integral, we get
⇒I=32∫√tdt−52∫√(x+32)2+(2−94)dx
⇒I=32∫√tdt−52∫√(x+32)2−(12)2dx
⇒I=32t3/23/2−52⎡⎢
⎢
⎢
⎢⎣(x+32)2√x2+3x+2+14⋅12ln∣∣∣(x+32)+√x2+3x+2∣∣∣⎤⎥
⎥
⎥
⎥⎦+C∴I=(x2+3x+2)3/2−5(2x+3)8√x2+3x+2−516ln∣∣∣(x+32)+√x2+3x+2∣∣∣+C