Let I=∫(x−1x+1)4dx
(x−1)4(x+1)4=Ax+1+B(x+1)2+C(x+1)3+D(x+1)4
(x−1)4=A(x+1)3+B(x+1)2+C(x+1)+D
When x=−1, (−2)4=D⇒D=16
when x=0, 1=A+B+C+D
when x=1, 0=(2)3A+(2)2B+2C+D
⇒0=8A+4B+2C+D
When x=2, 1=27A+9B+3C+D
A+B+C=−15
4A+2B+C=−8
9A+3B+C=−5
⇒3A+B=7
Also, 4A+B=5
⇒A=−2,B=13,C=−26
Let x+1=t
dx=dt
⇒I=−2∫dtt+13∫dtt2−26∫dtt3+16∫dtt4
⇒I=−2logt−13t+13t2−163t3+c
⇒I=−2log(x+1)−13x+1+13(x+1)2−163(x+1)3+c