I=∫ex(1+x2−2x)(1+x2)2dx
I=∫ex1+x2(1+x2)2dx − ∫ex2x(1+x2)2dx
I=∫ex1(1+x2)dx − ∫ex2x(1+x2)2dx
By integration by parts :
∫[f(x)g(x)]dx=f(x)⋅∫g(x)dx−∫[f′(x)∫g(x)dx]dx
By integration by parts of first integral
I= 11+x2∫ex−∫{(d(11+x2)dx)∫exdx}dx − ∫ex2x(1+x2)2dx
I=ex1(1+x2) + ∫ex2x(1+x2)2dx − ∫ex2x(1+x2)2dx
I=ex1(1+x2) + C