Consider the given integral.
I=∫π20(sinxsinx+cosx)dx …… (1)
We know that
∫baf(x)dx=∫baf(a+b−x)dx
Therefore,
I=∫π20⎛⎜ ⎜ ⎜ ⎜⎝sin(π2−x)sin(π2−x)+cos(π2−x)⎞⎟ ⎟ ⎟ ⎟⎠dx
I=∫π20(cosxcosx+sinx)dx ….. (2)
From equation (1) and (2), we get
2I=∫π20(cosx+sinxcosx+sinx)dx
2I=∫π201dx
2I=(x)π20
2I=(π2−0)
I=π4
Hence, the value is π4.