wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
π20sinxsinx+cosxdx

Open in App
Solution

Consider the given integral.

I=π20(sinxsinx+cosx)dx …… (1)

We know that

baf(x)dx=baf(a+bx)dx

Therefore,

I=π20⎜ ⎜ ⎜ ⎜sin(π2x)sin(π2x)+cos(π2x)⎟ ⎟ ⎟ ⎟dx

I=π20(cosxcosx+sinx)dx ….. (2)

From equation (1) and (2), we get

2I=π20(cosx+sinxcosx+sinx)dx

2I=π201dx

2I=(x)π20

2I=(π20)

I=π4

Hence, the value is π4.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon