1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Multinomial Expansion
Evaluate ∫1...
Question
Evaluate
e
∫
1
e
x
x
(
1
+
x
log
x
)
d
x
Open in App
Solution
∫
e
1
(
e
x
x
+
e
x
x
x
log
x
)
d
x
=
∫
e
1
(
e
x
x
+
e
x
log
x
)
d
x
=
∫
e
1
e
x
x
d
x
+
∫
e
1
e
x
log
x
d
x
Consider
∫
e
1
e
x
log
x
d
x
Let
u
=
log
x
⇒
d
u
=
1
x
d
x
d
v
=
e
x
d
x
⇒
v
=
e
x
=
∫
e
1
e
x
x
d
x
+
[
e
x
log
x
]
e
1
−
∫
e
1
e
x
x
d
x
=
[
e
x
log
x
]
e
1
=
[
e
e
log
e
−
e
1
log
1
]
=
e
e
log
e
Suggest Corrections
0
Similar questions
Q.
∫
e
1
e
x
x
(
1
+
x
l
o
g
x
)
d
x
=
Q.
∫
t
1
e
x
x
(
1
+
x
l
o
g
x
)
d
x
=