I=∫[log(logx)+1(logx)2]dx
=∫log(logx)I.1dxII+∫1(logx)2dx
=log(logx).x−∫1logx×1x.x+∫1(logx)2dx
=log(logx)−∫1logxI.1dxII+∫1(logx)2dx
=log(logx)−1logx.x+∫−1(logx)2.1dx+∫1(logx)2dx
=xlog(logx)−xlogx+c