wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate π0xa2cos2x+b2sin2xdx

Open in App
Solution

I=π0xa2cos2x+b2sin2xdx

I=π0πxa2cos2x+b2sin2xdx

Adding above two equations I+I=π0xa2cos2x+b2sin2xdx+π0πxa2cos2x+b2sin2xdx

2I=π0πa2cos2x+b2sin2xdx

2I=π0πa2cos2x+b2sin2xdx

I=π2π0sec2xa2+b2tan2x

Now, let tan x = t

Therefore,

sec2xdx=dt

I=2π20dta2+b2t2

I=πb20dt(ab)2+t2

I=πb2×ba[tan1atb]0

I=πab×π2

I=π22ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon