wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate π0xsinx1+cos2xdx.

Open in App
Solution

I=π0xsinxdx1+cos2x---(1)
We know that
a0f(x)dx=a0f(ax)dx

I=π0(πx)sin(πx)dx1+cos2(πx)=π0(πx)sinxdx1+cos2xπ0πsinxdx1+cos2xπ0xsinxdx1+cos2x---- (2)

Adding (1) and (2)
2I=ππ0sinxdx1+cos2x

Put cosx=tsinxdx=dt.

Also when x=0,t=cos0=1 and x=πt=cosπ=1

Therefore, I=11dt1+t2π211dt1+t2

=π2[tan1t]11

I=π2[tan1(1)tan1(1)]=π2[π4π4]

I=(π2)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon