wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate ππ(cosaxsinbx)2dx

Open in App
Solution

Let I=ππ(cosaxsinbx)2dx

I=πpi(cos2ax+sin2bx2cosaxsinbx)dx

I=ππ(cos2ax+sin2bx)dxππ2cosaxsinbx dx

I=2ππ(cos2ax+sin2bx)dxππ2cosaxsinbx dx

I=2π0(cos2ax+sin2bx)dx0

[(cos2ax+sin2bx) is an even function while 2sinax cosbx is an odd function]

I=π0cos2axdx+2π0sin2bxdx

I=2π0(1+cos2ax)dx2+π0(1cos2bx2)dx

I=[x+sin2ax2a]π0+[xsin2bx2b]π0

I=π+sin2aπ2a+πsin2bπ2b

I=2π+sin2aπ2asin2bπ2b

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon