The correct option is B 13t3+2t−1t.
I=∫1cos4xsin2xdx=∫(sin2x+cos2x)2cos4xsin2xdx =∫[sin2xcos4x+1sin2x+2cos2x]dx =∫(sec2xtan2x+cosec2x+2sec2x)dx=13tan3x−cotx+2tanx Alt. Divide above and below by cos4+2x=cos6x ∴=∫sec4x,sec2xtan2xdx=∫(1+tan2x)2tan2xsec2xdx =∫(1+t2)2t2dt=∫(t2+2+1t2)dt =13t3+2t−1tetc.