wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate sin1(2x+24x2+8x+13) dx

A
(x+1)tan1(2x+23)34log(4x2+8x+13)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(x+1)tan1(23)34log(x2+8x+13)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan1(2x+23)+34log(4x2+8x+13)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (x+1)tan1(2x+23)34log(4x2+8x+13)+c
I=sin1(2x+24x2+8x+13)dx
=sin1⎜ ⎜2x+2(2x+2)2+32⎟ ⎟dx

Put 2x+2=3tanθ2dx=3sec2θdθ
I=sin1(3tanθ3secθ)32sec2θdθ
=32θsec2θdθ
=32{θtanθtanθdθ}
=32{θtanθlog|secθ|}+c
=322x+23tan1(2x+23)log1+(2x+23)2+c
=32{23(x+1)tan1(23(x+1))log4x2+8x+13}+c
I=(x+1)tan1(2x+23)34log(4x2+8x+13)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon