The correct option is
C 14[2x√1−4x2−cos−12x]+cLet
2x=cosθOn differentiating the above equation we get, 2dx=−sinθdθ⇒dx=−12sinθdθ
Thus, I=∫√1−4x2dx=∫√1−(2x)2dx=∫√1−cos2θ(−12sinθdθ)=−12∫√sin2θsinθdθ=−12∫sin2θdθ
∵sin2θ=1−cos2θ2
∴I=−12∫1−cos2θ2dθ=14∫(cos2θ−1)dθ=14[sin2θ2−θ]+c
∵sin2θ=2sinθcosθ=2×√1−4x2×2x
Thus, I=14[4x√1−4x22−cos−12x]+c=14[2x√1−4x2−cos−12x]+c