wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate [cotx+tanx]dx

Open in App
Solution

I=[cotx+tanx]dx
I=[cosxsinx+sinxcosx]dx
I=sinx+cosxsinx.cosxdx
Let,
sinxcosx=u ; u2=(sinxcosx)2=sin2x+cos2x2sinx.cosx
(sinx+cosx)dx=du u2=12sinx.cosx
sinx.cosx=1u22
I=du1u22=2du1u2=2sin1u+c
I=2sin1(sinxcosx)+c
=2tan1(sinxcosx2sinx.cosx)+c
=2tan1⎜ ⎜ ⎜sinxcosxcosxcosx1cosx2sinx.cosx⎟ ⎟ ⎟+c
=2tan1⎜ ⎜ ⎜ ⎜tanx12sinx.cosxcos2x⎟ ⎟ ⎟ ⎟+c
=2tan1(tanx12tanx)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon