The correct option is B √2tan−1(tanx−1√2tanx)+c
Given, ∫(√cotx+√tanx)dx
Put tanx=t2 ⇒ sec2xdx=2tdt . Then the equation becomes:
⇒ ∫(t+1t)2tdtt4+1
⇒ 2∫t2+1t4+1dt
Now dividing the numerator and denominator by t2 we get :
⇒ 2∫1+1t2t2+1t2dt
⇒ 2∫1+1t2(t−1t)2+2dt
Putting (t−1t)=k ⇒ (1+1t2)dt=dk
⇒ 2∫1k2+(√2)2dk
⇒ 2∫1k2+(√2)2dk=2√2tan−1(k√2)+c=√2tan−1(t−1t√2)+c=√2tan−1(tanx−1√2tanx)+c
Hence, option 'C' is correct.