The correct option is A √x√1−x−2√1−x+cos−1√x+c
∫√1−√x1+√xdx
Substitute √x=sint
x=sin2t
dx=2sintcost
I=2∫√1−sint1+sintsintcostdt
=2∫√1−sint1+sint×1−sint1−sintsintcostdt
=2∫1−sintcostsintcostdt
=2∫(sint−sin2t)dt
=2∫(sint−(1−cos2t)2)dt
=2[−cost−12t+sin2t4]+C
=−2cost−t+sintcost+C
=−2√1−x−sin−1√x+√x√1−x+C
=−2√1−x+cos−1√x+√x√1−x+c (∵sin−1x+cos−1x=π2)