wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
(tanx+cotx)dx.

Open in App
Solution

I=(tanx+cotx) dx

I=(sinxcosx+cosxsinx) dx

I=sinx+cosxsinxcosxdx

I=sinx+cosxsinxcosxdx

Put sinxcosx=t

(cosx+sinx)=dtdx

Also, (sinxcosx)2=t2

sin2x+cos2x2sinxcosx=t2

12sinxcosx=t2

sinxcosx=1t22

Therefore,

I=dt1t22

I=2dt1t2

I=2sin1(t)+C

I=2sin1(sinxcosx)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon