The correct option is C √2tan−1(√tanx−√cotx√2)+C
Let I=∫(√tanx+√cotx)dx
=∫tanx+1√tanxdx
Put tanx=t2
⇒sec2xdx=2t dt
⇒dx=2t dt1+tan2t=2t1+t4dt
Therefore, I=∫t2+1√t2⋅2tt4+1dt
=2∫t2+1t4+1dt
=2∫1+1t2t2+1t2−2+2dt
=2∫1+1t2(t−1t)2+(√2)2dt
=2∫duu2+(√2)2
where, u=t−1t⇒du=(1+1t2)dt
⇒I=2√2tan−1(u√2)+C
=√2tan−1(√tanx−√cotx√2).