The correct option is
B (x2+34)√x2+3x−98cosh−1(2x3+1)+cHere x2+3x=x2+2×x×32+(32)2−(32)2=(x+32)2−(32)2
∴I=∫√(x+32)2−(32)2dx .... ∵∫√x2−a2dx=x2√x2−a2−a22cosh−1(xa)+c
Thus, I=(x+32)2√(x+32)2−(32)2−(32)22cosh−1⎛⎜
⎜
⎜⎝x+3232⎞⎟
⎟
⎟⎠+c
⇒I=(x2+34)√x2+3x−98cosh−1(2x3+1)+c