The correct option is
C
(x+√x2+2)3/23−2(x+√x2+2)−1/2+c
Let √x+√x2+2=t2
∴t4−2t2x+x2=x2+2
∴x=t22−1t2
dx=(t+2t3)dt
Substituting these values makes the question easy to solve.
We get ∫t2dt+∫2t2dt=t33−2t+c
Re-substitute the value of t, we get
(x+√x2+2)3/23−2(x+√x2+2)−1/2+c