wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: tan1(secx+tanx)dx where π2<x<π2

Open in App
Solution

tan1(secx+tanx)dx

=tan1(1cosx+sinxcosx)dx

=tan1(1+sinxcosx)dx

=tan1⎜ ⎜sin2x2+cos2x2+2sinx2cosx2cos2x2sin2x2⎟ ⎟dx

=tan1⎜ ⎜(sinx2+cosx2)2(cosx2+sinx2)(cosx2sinx2)⎟ ⎟dx

Dividing by cosx2 in numerator & denominator, we get
=tan1⎜ ⎜tanx2+11tanx2⎟ ⎟dx

=tan1⎜ ⎜tanπ4+tanx21tanπ4tanx2⎟ ⎟dx

=tan1[tan(x2+π4)]dx

=(x2+π4)dx=x24+πx4+C=14x(x+π)+c
Since, π2<x<π2
I=14[π24+π22π24+π22]=π24

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon