The correct option is C log{√sec2xcos(x+a)cos(x−a)}
Let I=∫tan(x−a)tan(x+a)tan2xdx
As 2x=(x+a)+(x−a)⇒tan2x=tan(x+a)+tan(x−a)1−tan(x+a)tan(x−a)
⇒tan2x−tan(x+a)−tan(x−a)=tan2xtan(x+a)tan(x−a)
Therefore
I=∫[tan2x−tan(x+a)−tan(x−a)]dx
=12logsec2x−logsec(x+a)−logsec(x−a)
=log{√sec2xcos(x+a)cos(x−a)}.