wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
(x5)x2+x.dx

Open in App
Solution

(x5)x2+xdx
Let x5=mddx(x2+x)+N
x5=m(2x+1)+N
x5=2xm+m+N
compare
2m=1 m+N=5
m=12 N=512
N=112
So (x5)x2+xdx=12(2x+1)x2+xdx12x2+xdx
Now 12(2x+1)x2+xdx Here x2+xdx
Let x2+x=t =x2+x+1414dx
dx(2x+1)=dt =(x+12)2(12)2
12tdt =(x+12)2(x+12)2(12)2+14cos1⎜ ⎜ ⎜x+1212⎟ ⎟ ⎟+C
12t12dt =2x+14x2+x+14cos1(2x+1)+C
12t3232
(x2+x)323
(x2+x)323+2x+14x2+x+14cos1(2x+1)+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon