∫(x−5)√x2+xdx
Let x−5=mddx(x2+x)+N
x−5=m(2x+1)+N
x−5=2xm+m+N
compare
2m=1 m+N=−5
m=12 N=−5−12
N=−112
So ∫(x−5)√x2+xdx=12∫(2x+1)√x2+xdx−12∫√x2+xdx
Now 12∫(2x+1)√x2+xdx Here ∫√x2+xdx
Let x2+x=t =∫√x2+x+14−14dx
dx(2x+1)=dt =∫√(x+12)2−(12)2
12∫√tdt =(x+12)2√(x+12)2−(12)2+14cos−1⎛⎜
⎜
⎜⎝x+1212⎞⎟
⎟
⎟⎠+C
12∫t12dt =2x+14√x2+x+14cos−1(2x+1)+C
12t3232
(x2+x)323
(x2+x)323+2x+14√x2+x+14cos−1(2x+1)+C.