Evaluate: ∫xddx(x2+1x) dx
udvdx=duvdx−vdudxu=xv=x2+1xxddx(x2+1x)=ddx(xx2+1x)−x2+1xdxdxI=∫xddx(x2+1x)dx=∫[ddx(xx2+1x)−x2+1xdxdx]dxI=∫ddx(x2+1)dx−∫x2+1xdxI=(x2+1)−∫(x+1x)dx+KI=x2+1−[x22+lnx]+C′I=x2−x22−lnx{C=C′+1}I=x22−lnx+C
∫ex(x−1)(x−ln x)x2dx is equal to
Find the integral of the given function w.r.t - x
y=x−1x+1x2