Evaluate: ∫xddx(x2lnx) dx
udvdx=duvdx−vdudxu=xv=x2lnxxddx(x2lnx)=ddx(x⋅x2lnx)−x2lnxdxdxI=∫xddx(x2lnx)dx=∫[ddx(x3lnx)−x2lnxdxdx]dxI=∫ddx(x3lnx)dx−∫x2lnxdx
Using integration by parts;
I=x3lnx−[x33lnx−∫x33dxx]+kI=2x33lnx+[x39]+CI=x39(6lnx+1)+C