Evaluate: ∫xddx(sin2x) dx
udvdx=duvdx−vdudxu=xv=sin2xxddx(sin2x)=ddx(xsin2x)−sin2xdxdxI=∫xddx(sin2x)dx=∫[ddx(xsin2x)−sin2xdxdx]dxI=∫ddx(xsin2x)dx−∫sin2xdxI=(xsin2x)−∫12(1−cos2x)dx+KI=x[12(1−cos2x)]−12[x−sin2x2]+CI=x2−xcos2x2−x2+sin2x4+C
Hence the final and correct answer is;
I=14sin2x−x2cos2x+C