1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of Function
Evaluate ∫ ...
Question
Evaluate
∫
x
(
sec
2
x
−
1
)
(
sec
2
x
+
1
)
d
x
A
x
tan
x
−
log
|
sec
x
|
+
x
2
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x
tan
x
−
log
|
sec
x
|
−
x
2
2
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x
tan
x
−
log
|
sec
x
2
|
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x
tan
x
−
log
|
sec
x
2
|
+
x
2
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
x
tan
x
−
log
|
sec
x
|
−
x
2
2
+
c
∫
x
(
sec
2
x
−
1
sec
2
x
+
1
)
d
x
=
∫
x
(
1
−
cos
2
x
1
+
cos
2
x
)
d
x
=
∫
x
tan
2
x
d
x
∫
x
(
sec
2
x
−
1
)
d
x
=
∫
x
sec
2
x
d
x
−
∫
x
d
x
We know,
∫
u
.
v
d
x
=
u
∫
v
d
x
−
∫
(
d
u
d
x
∫
v
d
x
)
d
x
Now by integrating the functions by parts, for the first part taking
x
as
u
and
s
e
c
2
x
as
v
.
=
x
∫
sec
2
x
d
x
−
∫
1
(
∫
sec
2
x
d
x
)
d
x
−
∫
x
d
x
=
x
tan
x
−
∫
tan
x
d
x
−
x
2
2
+
c
=
x
tan
x
−
log
|
sec
x
|
−
x
2
2
+
c
∫
x
(
sec
2
x
−
1
sec
2
x
+
1
)
d
x
=
x
tan
x
−
log
|
sec
x
|
−
x
2
2
+
c
Suggest Corrections
0
Similar questions
Q.
The value of the integral
∫
x
2
(
x
sec
2
x
+
tan
x
)
(
x
tan
x
+
1
)
2
d
x
is
Q.
∫
(
x
s
e
c
2
x
+
t
a
n
x
)
(
x
t
a
n
x
+
1
)
d
x
=
−
x
x
t
a
n
x
+
1
f
(
x
)
+
c
then f(x)=
Q.
∫
x
−
s
i
n
x
1
+
c
o
s
x
d
x
=
x
t
a
n
(
x
2
)
+
p
l
o
g
∣
∣
s
e
c
(
x
2
)
∣
∣
+
c
⇒
p
=
Q.
∫
sec
3
x
d
x
=
1
2
[
sec
x
tan
x
+
log
(
?
+
tan
x
)
]
+
c
Choose the appropriate option to replace the question mark in the above equation.
Q.
Evaluate
∫
x
dx
(
x
−
1
)
(
x
2
+
4
)