The correct options are
B 12x|x|ln|x2|−12x|x|+c,x≠0 D −x22ln|x2|+x22+c,x<0∫|x|ln|x2|dxfor x<0
∫−x|ln|x2|dx
∫−|ln|x2|d(x2)2 Since xdx=d(x2)2
=−12[ln|x2|.x2−∫x2.1x22xdx]
=−12[ln|x2|.x2−2x22+c]
=−12ln|x2|.x2+x22+c′
for x>0
∫|x|ln|x2|dx
∫|ln|x2|d(x2)2
=12[ln|x2|.x2−∫x2.1x22xdx]
=12[ln|x2|.x2−2x22+c]
=12ln|x2|.x2−x22+c
for x>0→12ln|x2|.x2−x22+c
x<0→−12ln|x2|.x2+x22+c′
x≠0→12ln|x2|.x|x|−x|x|2+c
Answer B,C