Evaluate : ∫xx.(1+logx)dx is equal to,
∫xx(1+logx)dx
Let xx=t
Applying log on both the side
log xx=log t
xlogx=logt
Taking Derivative w.r.t. x
(x×1x+logx)dx=1tdt
⇒(1+logx)×xxdx=dt......(∵t=xx)
⇒∫dt
=t+c
=xx+c
Hence option C is the answer.