The correct option is A 12√x
Method I
limh→0√x+h−√xh (00form)
=limh→0√x+h−√xh×√x+h+√x√x+h+√x
=limh→0(x+h)−xh(√x+h+√x)
=limh→0hh(√x+h+√x)
=limh→01√x+h+√x=12√x
Method II
limh→0√x+h−√xh (00form)
∴ Applying L'Hospital's rule [differentiating numerator and denominator w.r.t. h]
=limh→012√x+h−01=12√x