Evaluate limn→∞{(1+1n)(1+2n)…(1+nn)}1/n
limn→∞((1+1n)(1+2n)….(1+nn))1n
limn→∞eln⎡⎣⎛⎝1+1n⎞⎠⎛⎝1+2n⎞⎠….(1+nn)⎤⎦1n(∵alogam=m)
limn→∞e1n(ln(1+1n)+ln(1+2n)+….+ln(1+nn))(∵ln(ab)=lna+lnb)
=elimn→∞1n⋅n∑r=1ln(1+rn)
=e∫10ln(1+x).dx
{∫10ln(1+x)dx=ln(1+x)⋅x]10−∫101x+1⋅x⋅dx
=ln2−∫10x+1–xx+1dx
=ln2−∫10(x)dx+∫101x+1dx
=ln2–1+ln(x+1)]10
=2ln2–1=ln(4/e)}
=eln(4/e)=4e.