Given, limn→∞[1n3+22n3+32n3+…+n2n3]
=limn→∞n∑r=11n(rn)2=∫10x2dx
⇒∫10x2dx=(x33)10
=(13−0)=13
limn→∞[1n3+22n3+32n3+......+n2n3]=13