Evaluate limn→∞{logn−1(n).logn(n+1)…lognk−1(nk)}, where k∈N−{1}.
A
k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
logk
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nk
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ak Let P=limn→∞logn−1(n).logn(n+1)………lognk−1(nk) =limn→∞{lognlog(n−1).log(n+1)log(n)……log(nk)log(nk−1)} =limn→∞log(nk)log(n−1)=k.limn→∞lognlog(n−1)=k.limn→∞1n1n−1=k.limn→∞(1−1n) ⟹limn→∞{logn−1(n).logn(n+1)………lognk−1(nk)}=k