wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
limx01x21sin2x

Open in App
Solution

limx0(1x21sin2x)=limx0(sin2xx2x2sin2x)

limx0⎜ ⎜ ⎜ ⎜sin2xx2x2(sin2xx2)×x2⎟ ⎟ ⎟ ⎟[limx0sinxx=1]

limx0(sin2xx2x4)=limx0((sinxx)(sinx+x)x4)

limx0(sinx+xx)limx0(sinxxx3)

limx0(sinxx+1) Use L hospitals rule

1+1=2

2limx0(sinxxx3)

2limx0(cosx13x2)

2limx0(sinx6x)2limx0(cosx6x)=16×2

=13.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon