wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate limx0(1+x)1/xex

Open in App
Solution

limx0(1+x)1/xex

Using L-hospital rule,

=limx0ddx(1+x)1/x

Let y=(1+x)1/x

logy=1xlog(1+x)

1ydydx=[x1+xlog(1+x)]x2

dydx=(1+x)1/x[x1+xlog(1+x)]x2

Therefore,

limx0(1+x)1/xex=limx0(1+x)1/e[x1+xlog(1+x)]x2

=e×limx0[x1+xlog(1+x)]x2

Again using L-hospital rule,

=e×limx0[(1+x)x(1+x)21(1+x)]2x

=e×limx0[1(1+x)21(1+x)]2x

Again using L-hospital rule

=e×limx0[2(1+x)3+1(1+x)2]2

=e×(2+12)=12e


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon