wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: limx0x(esinx1)1cosx

A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 2
We know limx0=ex1x=1
Using this
limx0 ⎜ ⎜ ⎜ ⎜x(esinx1sinx)xsinx1cosx⎟ ⎟ ⎟ ⎟
=limx0xsinx(esinx1sinx)12sin2x2(since 1cosx=2sin2x2)
=limx0x2sinx2cosx22sin2x2esinx1sinx Since (sinx=2sinx2cosx2)
=limx0cosx/2sinx2x=esinx1sinx
=limx0cos(x2)sin(x2)x2×2esinx1sinx
=2limx0(cosx/2sin(x/2)x/2esinx1sinx=2×11×1
=2.

1257521_1328152_ans_0ef0b980d2f9437bad83f8c2a93c3c79.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon