Given limit of the form 1∞, as we put x=0.
let y=limx→(2x+22x+23x3)1/x [1∞ from indeterminate form of limit]
Taking natural logarithm both sides:-
⇒ log=limx→0ln(2x+22x+23x3)1/x
⇒ log=limx→01xln(2x+22x+23x3)
⇒ log=limx→0ln(2x+22x+23x)−ln3x[00 form indetiominate form ]
Applying,
Hospital's rule:-
⇒ log=limx→0ddx[ln(2x+22x+23x)−ln3]ddx(x)
⇒ log=limx→0[[2xln2+2.2x.ln2+3.2x.ln2]−0(2x+22x+23x)÷1]
⇒ log=limx→022[ln2+ln22+ln23]2x+22x+23x
Applying times x=0:-
log=20[ln(2.4.8)]20+22.0+23.0
log=13ln64
log=ln641/3
log=ln4
Taking antilogarthim both sides:-
y=4