The correct option is
A 1.5Let the given summation be
LL=∞∑i=12i−12i+1=∞∑i=1i2i−∞∑i=112i+1
Consider ∞∑i=1i2i=1.12+2.122+3.123+.......∞=12(1+2.12+3.122+.....+∞)
Observe that, it is a arithmetic geometric progression with a=1,d=1,r=12
⇒∞∑i=1i2i=12(a1−r+rd(1−r)2)=12(2+2)=2
Now consider ∞∑i=112i+1=122+123+124+.....+∞=122(1+12+122+123+...+∞)
Observe that, it is a geometric progression with a=1,r=12
⇒∞∑i=112i+1=14(a1−r)=14(2)=12
Therefore the value of L=∞∑i=1i2i−∞∑i=112i+1=2−0.5=1.5
Hence, option A is correct.