11∑k=1(2+3k)=11∑k=13k=211∑1(1)+11∑k=13k=2(11)+11∑k=13k=22+11∑k=13k...(1)∑11k=13k=31+32+33+...311
The terms of this sequence 3,32,33,.........311 forms a G.P.
∴Sn=a(rn−1)r−1⇒Sn=3[(3)11−1]3−1⇒Sn=32(311−1)∴∑11k=13k=32(311−1)
Substituting
this value in equation (1), we obtain ∑11k=1(2+3k)=22+32(311−1)