wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 32p=1(3p+2)(10q=1(sin2qπ11icos2qπ11))p

A
24(1i)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
48(1i)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
24(1+i)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
48(1+i)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 48(1i)
10q=1(sin2qπ11icos2qπ11)
={sin2π11+sin2π11+...+10terms}+i{cos2π11+cos4π11+...+10terms}
=sin(2π11+9π11)sin10π11sinπ11icos(2π11+9π11)sin10π11sinπ11=0i(1)=i ...(1)
S=32p=1(3p+2)[10q=1(sin29π11icos29π11)]p=32p=1(3p+2)ip
=332p=1pip+232p=1ip=3A+2B
Now
A=i+2i2+3i2+3i3+...+32i32Ai=i2+2i3+...+31i32+32i33A(1i)=i+i2+...+i323233
=i321i132i=32i[i32=1]
A=32i1i=32i(1+i)2=16(1i)
and B=i+i2+...+i32=0
Hence S=3×16(1i)=48(1i)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon