∫2−∣∣x2−x∣∣dx
(−1<x<0)x2−x>0(6≤x<1)x2−x<0(1≤x≤2)x2−x>0
∴I(x)⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩x3−xx−x3x2−x−1≤x<00≤x<11≤x<2
∴I=∫0−1x3−xdx+∫10(x−x3)dx+∫21(x3−x)dx
=x44−x22]0−1+x22−x44]10+x44−x22]21
=(0−14)−(0−12)+(14−0)+(244−14)−(22−12)
=−14+12+12−14+4−14−2+12
=−34+32+2
=−3+6+84⇒114
∴∫2−1∣∣x3−x∣∣ dx=114