Evaluate limx→a1(a2−x2)2[a2+x2ax−2sin[aπ2]sin[πx2]] where a is an odd integer
A
π2a2+416a4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π2a2−416a4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2a2−416a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π2a2+416a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ2a2+416a4 limx→a1(a2−x2)2[a2+x2ax−2sin[aπ2]sin[πx2]] =limh→01(a2−a2−h2−2ah)2[a2+a2+h2+2aha2+ah−2sin[aπ2]sin[(a+h)π2]] =limh→01h2(h+2a)2[2a2+h2+2aha2+ah−[coshπ2−cos[aπ+hπ2]]] =limh→01h2(h+2a)2[2a2+h2+2aha2+ah−2cosπh2] [∵ a is odd integer] =limh→01h2(h+2a)2[h2a2+ah+2−2cosπh2] =limh→014a2[2[1−cos(π/2)hh2]+1a2]=π2a2+416a4