The correct option is B
2√3tan−1(2x−1√3)+C
To solve integrals of this form we express our denominator as a perfect square,
Here, we can express the integrand as:
1x2−x+1=1x2−2(12)x+14−14+1=1(x−1/2)2+3/4=1(x−1/2)2+(√3/2)2
Now, we can solve our integral as:
I=∫dx(x−1/2)2+(√3/2)2Now, using the formula ∫dxx2+a2=1atan−1(xa)+C⇒I=1√3/2tan−1(x−1/2√3/2)+C⇒I=2√3tan−1(2x−1√3)+C