wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate each of the following integrals:

02πesinxesinx+e-sinxdx

Open in App
Solution


Let I = 02πesinxesinx+e-sinxdx .....(1)

Then,

I=02πesin2π-xesin2π-x+e-sin2π-xdx 0afxdx=0afa-xdx=02πe-sinxe-sinx+esinxdx .....2

Adding (1) and (2), we get

2I=02πesinx+e-sinxesinx+e-sinxdx2I=02πdx2I=x02π2I=2π-0I=π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon