wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate each of the following integrals:

-π2π2cos2x1+exdx

Open in App
Solution


Let I = -π2π2cos2x1+exdx .....(1)
Then,
I=-π2π2cos2π2+-π2-x1+eπ2+-π2-xdx abfxdx=abfa+b-xdx=-π2π2cos2-x1+e-xdx=-π2π2excos2xex+1dx .....2

Adding (1) and (2), we get

2I=-π2π2cos2x1+ex+excos2x1+exdx2I=-π2π2cos2x1+ex1+exdx2I=-π2π2cos2xdx2I=-π2π21+cos2x2dx
2I=12-π2π2dx+12-π2π2cos2xdx2I=12×x-π2π2+12×sin2x2-π2π22I=12π2--π2+14sinπ-sin-π2I=12×π+140+0 sin-π=-sinπ=02I=π2I=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon